EXTL2 and EXTL3 inhibition with siRNAs as a promising substrate reduction therapy for Sanfilippo C syndrome

نویسندگان

  • Isaac Canals
  • Noelia Benetó
  • Mónica Cozar
  • Lluïsa Vilageliu
  • Daniel Grinberg
چکیده

Sanfilippo syndrome is a rare lysosomal storage disorder caused by an impaired degradation of heparan sulfate (HS). It presents severe and progressive neurodegeneration and currently there is no effective treatment. Substrate reduction therapy (SRT) may be a useful option for neurological disorders of this kind, and several approaches have been tested to date. Here we use different siRNAs targeting EXTL2 and EXTL3 genes, which are important for HS synthesis, as SRT in Sanfilippo C patients' fibroblasts in order to decrease glycosaminoglycan (GAG) storage inside the lysosomes. The results show a high inhibition of the EXTL gene mRNAs (around 90%), a decrease in GAG synthesis after three days (30-60%) and a decrease in GAG storage after 14 days (up to 24%). Moreover, immunocytochemistry analyses showed a clear reversion of the phenotype after treatment. The in vitro inhibition of HS synthesis genes using siRNAs shown here is a first step in the development of a future therapeutic option for Sanfilippo C syndrome.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biosynthesis of heparan sulfate in EXT1-deficient cells.

HS (heparan sulfate) is synthesized by HS co-polymerases encoded by the EXT1 and EXT2 genes (exostosin 1 and 2), which are known as causative genes for hereditary multiple exostoses, a dominantly inherited genetic disorder characterized by multiple cartilaginous tumours. It has been thought that the hetero-oligomeric EXT1-EXT2 complex is the biologically relevant form of the polymerase and that...

متن کامل

Glycosaminoglycans and mucopolysaccharidosis type III.

Mucopolysaccharidosis type III (MPS III), or Sanfilippo syndrome, is a lysosomal storage disease in which heparan sulfate is accumulated in lysosomes, as well as outside of cells, as the primary storage material. This disease is a complex of four conditions caused by dysfunctions of one of genes coding for lysosomal enzymes involved in degradation of heparan sulfate: SGSH (coding for heparan N-...

متن کامل

Dabigatran etexilate - A novel oral anticoagulant for bleeding complications

Thromboembolic disease is a common cause of morbidity and mortality. Thrombin plays a key role in thrombotic events and thrombin inhibition represents a therapeutic event for thromboembolic events and has been identified as a target of therapy of its pivotal role in coagulation process. Anticoagulation is a major intervention for the management of arterial and venous thromboembolic events. Dabi...

متن کامل

Mortality in patients with Sanfilippo syndrome

BACKGROUND Sanfilippo syndrome (mucopolysaccharidosis type III; MPS III) is an inherited monogenic lysosomal storage disorder divided into subtypes A, B, C and D. Each subtype is characterized by deficiency of a different enzyme participating in metabolism of heparan sulphate. The resultant accumulation of this substrate in bodily tissues causes various malfunctions of organs, ultimately leadin...

متن کامل

مهار بیان ژن GFP به وسیله تداخل RNA (RNAi) در دودمان سلولی کارسینومای جنینی P19

 Introduction: RNA interference (RNAi) is a phenomenon of gene silencing that uses double-stranded RNA (dsRNA), specifically inhibits gene expression by degrading mRNA efficiently. The mediators of degradation are 21- to 23-nt small interfering RNAs (siRNA). The use of siRNAs as inhibitors of gene expression has been shown to be an effective way of studying gene function in mammalian cells.  Ai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015